
Laser Material Processing

Company Profile

Qioptiq designs and manufactures photonic products and solutions, serving a wide range of markets and applications in the medical and life sciences, industrial manufacturing, defense and aerospace, and research and development sectors.

The company is known for its high-quality standard components, products and instruments, custom modules and assemblies, leading-edge innovation, precision manufacturing and responsive global sourcing. Due to a series of acquisitions, Qioptiq has an impressive history and pedigree, benefiting from the knowledge and experience of LINOS, Point Source, Rodenstock Precision Optics, Spindler & Hoyer, Gsänger, Optem, Pilkington, Avimo and others. With a total workforce exceeding 2,100, Qioptiq has a worldwide presence with locations throughout Europe. Asia and the USA.

Medical & Life Sciences

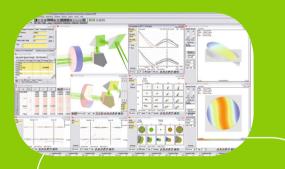
Industrial Manufacturing

Research & Development

Index

Company Profile	02 – 03
Our Core Competencies	04 – 05
LINOS F-Theta-Ronar Lenses	
Overview	06 – 07
340-360 nm	08
515-540/532 nm	09
940-980 nm	10
1064/1030-1080/1550 nm	11
LINOS Beam Expanders	
Overview	12 – 13
Manual Variable Versions	14
Motorized Versions	15
LINOS Focus-Ronar Lenses	
355 nm	16
1064+532 nm	17
Insitu Inspection System	18
Protective Glasses	19

03



Products for Laser Material Processing

Benefit from over 25 years of experience in the development of optical systems for laser material processing!

Our broad selection of manual and motorized beam expanders and comprehensive range of LINOS F-Theta-Ronar and Focus-Ronar lenses are engineered to meet the most stringent requirements. We possess the expertise to offer system-level solutions such as the inspec.x scan. This in-situ process control system focuses zoom micro-imaging through the scan head and F-Theta lens to simultaneously access, process and test the working area.

Our Core Competencies:

Development

- Development of
- Optical system design (in-house software-system, Code V[®], Zemax[®]) including back reflection analysis
- Mechanical desigr
- Coating design
- FEM-analysis including thermal effects for high-power applications
- Advanced tolerance analysis and yield simulation adapted to Qioptiq patented mounting and gluing technologies

Consistent High-Quality Production from Rapid Prototype to High Volume

Manufacturing

- State-of-the-art machinery for optics and mechanics production
- Development of in-house processes for precise assembly of optical elements
- Mounting techniques with accuracies down to 2 µm
- Active positioning and gluing technologies
- Cleanroom facilities
- Coating process from conventional deposition up to ion-beam-sputtering in spectral range: UV; VIS; NIR

Quality Control

 Automated measurement equipment for optical parameters (e.g. focal length) 75

- Measurements of the image spot diameter (1/e²) for Gaussian illumination for 355 nm, 532 nm and 1064 nm
- UV to NIR transmission measurements
- MTF testing at various wavelengths
- Enviromental testing (temperature, humidity, vibration, shock)
- Quality report on request
- After sales service
- Technical support

LINOS F-Theta-Ronar Lenses

The extreme versatility of lasers as a tool creates a broad market for focusing systems. F-Theta-Ronar lenses are used in combination with mirror scanning systems. High-quality LINOS F-Theta-Ronar lenses are designed to achieve consistent results over the entire scan field and are built for a wide range of applications.

- Drilling and fine cutting of metals and ceramics (e.g. micro drilling in PCBs)
- Plastic welding (e.g. fusion of plastic materials without additional materials)
- Structuring or perforating of metallic and nonmetallic materials (e.g. solar cells, glass)
- Marking (e.g. of smart cards, ICs, printing plates, in-glass, dashboard designs in the automotive industry)
- Cleaning with laser pulses for careful treatment of industrial products (e.g. wafers) as well as restoration projects (e.g. monuments).

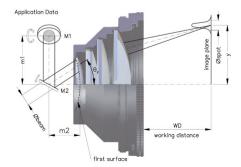
Characteristics of F-Theta lenses

F-Theta lenses have two main characteristics. When a beam is deflected by a scanning mirror in front of a lens, then the scanned distance is proportional to the scanning angle. Secondly the focus position over the entire scan field is always in the same plane.

Basic calculations of F-Theta-Ronar lenses

All LINOS F-Theta-Ronar lenses achieve diffraction limited performance. The truncated entrance-beam diameter and the image spot diameter refer to the intensity 1/e² at Gaussian illumination and for ideal M²=1. The spot size of LINOS F-Theta-Ronar lenses can be calculated with the following formula:

Spot-Ø = 1.83 * λ * FL / beam-Ø


	Spot-Ø:	image spot diameter [mm]		
1.83: fa		factor of apodisation		
	λ:	wavelength [nm]		
	FL:	focal length [mm]		
Beam-Ø: entrance-beam diameter				

The scan length in each direction x or y can be calculated by the formula:

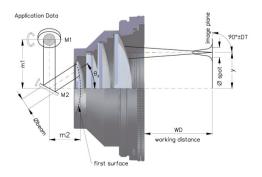
 $2y = FL * 2\Theta_v * \pi/180$ and $2x = FL * 2\Theta_x * \pi/180$

- 2x, 2y: scan length in direction x,y [mm]
- FL: focal length [mm]
- $2\Theta_{xy}$: max. scan angle Theta for each mirror [°]
- $\pi/180$: conversion factor (into radians)

The mirror distances m1 and m2 are recommended values and may vary. A smaller entrance-beam diameter allows larger scan angles and therefore larger scan fields are achievable.

Product range of LINOS F-Theta-Ronar lenses

Optical glass lenses


For all major applications a wide variety of lenses exist with various focal lengths ranging from 100 mm to 420 mm and for different wavelengths from 532 nm to 1550 nm.

Fused-silica lenses

Qioptiq has developed a range of sophisticated F-Theta-Ronar scan lenses made of fused silica for high-power and short-pulse laser material processing. Fused-silica lenses provide minimized thermal focus shift and higher resistance when working at high power density. These lenses are usable for wavelength ranges of 340-360 nm, 515-540 nm and 1030-1080 nm. A specially developed coating achieves very low reflection and absorption values. The optical designs minimize damage due to back reflections onto the scanning mirrors and internal reflections. The LINOS fused-silica F-Theta-Ronar lenses are suitable for fiber- and disk lasers as well as shortpulse and ultra-short- pulse lasers.

Telecentric lenses

With telecentric lenses the beam impact angle on the work piece is nearly perpendicular over the entire scan field.

The maximum scan field of telecentric lenses cannot exceed the lens diameter. On the other hand the spot roundness and the impact angle is constant over the scan field. Qioptiq offers telecentric F-Theta-Ronar lenses made of fused silica and of optical-glass/fusedsilica combination.

Further information for all standard F-Theta-Ronar lenses is available at:

www.qioptiq-shop.com including 3D CAD data and lens data sheets.

Customized solutions

In addition to our existing LINOS F-Theta-Ronar lenses Qioptiq offers customized solutions from adapted wavelength shift of standard lenses up to complete new designs. Please contact Qioptiq to discuss your requests with our specialists.

Coating

Coatings are applied on each lens surface to maximize the transmission of the complete optical system like F-Theta-Ronar lenses or beam expanders. The additional challenge for coatings in laser material applications lies in a high damage resistance. All our coatings are analyzed for laser-damage threshold values. The tests are conducted according to the standardized test method DIN EN ISO 11254-2, a multi-pulse procedure (S on 1) with given pulse lengths:

	Laser-damage threshold (J/cm²)	Pulse length (ns)
Optical-glass lenses		
532 nm	6 - 20	6
1064 nm	10 - 40	9
Fused-silica lenses		
355 nm	2	9
532 nm	15	12
1064 nm	20	12

LINOS F-Theta-Ronar 340-360 nm

LINOS F-Theta-Ronar telecentric lens for 355 nm, focal length 167 mm

- Fused-silica designs
- Telecentric versions available
- Focal lengths ranging from 100 mm to 255 mm, tolerance ±1%
- Screw thread M85x1
- Transmission ≥ 96 % with good performance in VIS-range
- Laser-damage threshold up to 2 J/cm² at 355 nm, 9 ns, 10 Hz
- Includes interchangeable fused- silica protective glasses
- All lenses can be used with enlarged beam diameters and different mirror distances. Accordingly the scan fields and spot size diameters will be changed. Please feel free to send us your request.

LINOS F-Theta-Ronar 340-360 nm - Fused silica

Focal length	Scan field	Max. scan angle ± $\Theta_{x,y}$	Beam diameter truncated at 1/e ²	Spot diameter at 1/e²	Mirror distances m1/m2	Working distance	Protective glass	Part No.
(mm)	(mm²)	(°)	(mm)	(µm)	(mm)	(mm)		
100 Telecentric	46x46	±12.7	10	7	13/29	136.7	PG11	4401-509-000-21
161	99x99	±17.6	7	15	12/16	197.4	PG4	4401-399-000-21
167 Telecentric	68x68	±11.3	10	13	13/48	255.0	PG15	4401-511-000-21
255	170x170	±19.3	10	17	13/30	318.1	PG11	4401-481-000-21

LINOS F-Theta-Ronar 515-540/532 nm

LINOS F-Theta-Ronar lens for 532 nm, focal length 330 mm

- Fused-silica and optical-glass designs
- Telecentric versions available
- Focal lengths ranging from 100 mm to 420 mm, tolerance ±1%
- Screw thread M85x1
- Sciew tillead Mosxi
- Transmission ≥ 96 % with good performance in VIS-range
- Laser-damage threshold up to 20 J/cm² at 532 nm, 6 ns, 100 Hz
- Includes interchangeable protective glasses
- All lenses can be used with enlarged beam diameters and different mirror distances. Accordingly the scan fields and spot size diameters will be changed. Please feel free to send us your request.

LINOS F-Theta-Ronar 515-540 nm - Fused silica

Focal length	Scan field	Max. scan angle ± $\Theta_{x,y}$	Beam diameter truncated at 1/e ²	Spot diameter at 1/e ²	Mirror distances m1/m2	Working distance	Protective glass	Part No.
(mm)	(mm²)	(°)	(mm)	(µm)	(mm)	(mm)		
166 Telecentric	86 x 86	±15.4	14	12	17/33	215.5	PG21	4401-517-000-21
255	170 x 170	±19.3	10	25	13/30	318.1	PG13	4401-496-000-21

Subject to technical changes

09

LINOS F-Theta-Ronar 532 nm - Optical glass

Focal length	Scan field	Max. scan angle ± $\Theta_{x,y}$	Beam diameter truncated at 1/e ²	Spot diameter at 1/e ²	Mirror distances m1/m2	Working distance	Protective glass	Part No.
(mm)	(mm²)	(°)	(mm)	(µm)	(mm)	(mm)		
100	58 x 58	±17.7	6	15	16/12	90.8	PG8	4401-304-000-21
100 Telecentric*	54 x 54	±15.6	15	7	20/32	126.6	PG7	4401-461-000-21
160	98 x 98	±17.7	10	16	16/12	176.1	PG8	4401-305-000-21
250	154 x 154	±17.7	20	12	22/24	288.5	PG7	4401-289-000-20
330	204 x 204	±17.7	14	23	18/24	389.0	PG7	4401-485-000-21
420	275 x 275	±18.7	15	27	17/28	389.0	PG7	4401-489-000-21

* Entrance lens made of fused silica

LINOS F-Theta-Ronar 940-980 nm

LINOS F-Theta-Ronar lens for 940-980 nm, focal length 330 mm

- Focal lengths ranging from 100 mm to 420 mm, tolerance ±1%
- Screw thread M85x1, except 4401-527-000-21 M76x1
- Transmission \geq 97 % at 940–980 nm
- Transmission \geq 75 % at VIS-range
- Laser-damage threshold up to 6 J/cm² at 1064 nm, 10 ns, 100 Hz
- Includes interchangeable protective glasses
- All lenses can be used with enlarged beam diameters and different mirror distances.
 Accordingly the scan fields and spot size diameters will be changed. Please feel free to send us your request.

LINOS F-Theta-Ronar 940-980 nm - Optical glass

Focal length at 980 nm	Scan field	Max. scan angle ± $\Theta_{x,y}$	Beam diameter truncated at 1/e ²	Spot size at 1/e²	Mirror distances m1/m2	Working distance	Protective glass	Part No.
(mm)	(mm²)	(°)	(mm)	(µm)	(mm)	(mm)		
100	43x43	±12.3	14	14	17/18	96.9	PG19	4401-528-000-21
160	94x94	±16.9	14	22	17/16	174.7	PG19	4401-529-000-21
163	96x96	±16.9	14	20	17/30	183.7	PG18	4401-527-000-21
254	139x139	±15.7	20	24	26/28	294.2	PG17	4401-526-000-21
330	204x204	±17.7	20	32	26/28	386.0	PG17	4401-524-000-21
420	259x259	±17.7	20	40	26/28	491.7	PG17	4401-525-000-21

LINOS F-Theta-Ronar 1064/1030-1080/1550 nm

LINOS F-Theta-Ronar lens for 1030-1080 nm, focal length 420 mm

- Fused-silica and optical-glass designs
- Telecentric versions available
- Focal lengths ranging from 100 mm to 420 mm, tolerance ±1 %
- Screw thread M85x1, except 4401-261-000-21 M76x1
- Transmission ≥ 96 % with good performance in VIS-range
- Laser-damage threshold up to 40 J/cm² at 1064 nm, 9 ns, 100 Hz
- Includes interchangeable protective glasses
- All lenses can be used with enlarged beam diameters and different mirror distances. Accordingly the scan fields and spot size diameters will be changed. Please feel free to send us your request.

LINOS F-Theta-Ronar 1030-1080 nm - Fused silica

Focal length	Scan field	Max. scan angle ± $\Theta_{x,y}$	Beam diameter truncated at 1/e ²	Spot diameter at 1/e ²	Mirror distances m1/m2	Working distance	Protective glass	Part No.
(mm)	(mm²)	(°)	(mm)	(µm)	(mm)	(mm)		
167 Telecentric	84 x 84	±14.8	20	17	26/28	215.4	PG16	4401-513-000-21
255	170 x 170	±19.2	10	50	13/30	317.4	PG14	4401-499-000-21
340	205 x 205	±17.7	14	51	17/29	441.6	PG16	4401-546-000-21
420	254 x 254	±17.3	14	60	26/24	510.9	PG14	4401-508-000-21

LINOS F-Theta-Ronar 1064 - Optical glass

Focal length	Scan field	Max. scan angle ± $\Theta_{x,y}$	Beam diameter truncated at 1/e ²	Spot diameter at 1/e ²	Mirror distances m1/m2	Working distance	Protective glass	Part No.
(mm)	(mm²)	(°)	(mm)	(µm)	(mm)	(mm)		
100	62 x 62	±17.7	12	16	16/12	97.7	PG2	4401-302-000-21
100 Telecentric*	54 x 54	±15.6	15	13	20/32	126.0	PG9	4401-464-000-21
160	99 x 99	±17.7	12	26	16/12	176.2	PG2	4401-301-000-21
163	115 x 115	±20.2	10	32	13/24	185.9	PG5	4401-261-000-21
254	157 x 157	±17.7	20	25	26/23	296.2	PG6	4401-288-000-20
330	217 x 217	±18.7	16	40	18/24	387.6	PG6	4401-360-000-21
420	291 x 291	±19.8	15	55	30/16	494.2	PG6	4401-350-000-21

* Entrance lens made of fused silica

Subject to technical changes

Subject to technical changes

LINOS F-Theta-Ronar 1550 nm - Optical glass

Focal length (mm)	Scan field (mm²)	Max. scan angle ± ⊖ _{x,y} (°)	Beam diameter truncated at 1/e ² (mm)	Spot diameter at 1/e ² (µm)	Mirror distances m1/m2 (mm)	Working distance (mm)	Protective glass	Part No.
100 Telecentric	53 x 53	±15.6	15	20	20/32	127.9	PG20	4401-532-000-21

11

LINOS Beam Expanders

LINOS beam expanders are optical systems for beam forming used in laser material processing. They can vary the diameter and the divergence of a laser beam and allow optimization of focus diameter, focus position and beam propagation.

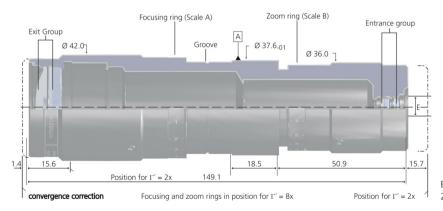
Qioptiq offers standard versions of manual and motorized variable beam expanders made of fused silica and/or optical glass.

LINOS Beam Expanders are optimally employed in conjunction with LINOS F-Theta-Ronar lenses for applications including:

- Laser structuring of foils
- Laser scribing of ceramic substrates
- Cutting of solar cells
- Micro drilling of sheet metal
- Marking of diverse materials with encodings

All LINOS beam expanders can also be implemented in reverse mode as beam reducers.

Manual version


Continuous magnification between 2x and 8x or between

2x and 10x are available. In addition Qioptiq offers manual variable beam expanders with fused-silica entrance lenses for higher laser resistance.

The back focal length of F-Theta-Ronar or Focus-Ronar lenses can be modified by changing the divergence of the incoming laser beam. Fine focusing of the beam expander compensates the focal length tolerances of other optical components as well as divergence of the laser source.

Handling

Zoom and focusing scales of the LINOS manual beam expanders are set according to product specific graphs. The expansion factor is adjusted by turning the focusing ring and zoom ring. To focus the beam expansion, only the focusing ring should be adjusted. The beam expander is mounted on surface A. Please take care that the laser beam is centered on the entrance lens and parallel to the optical axis of the beam expander (x/y tilt adjustment).

Beam expander with a variable expansion factor 2x to 8x for 1064 nm.

Motorized version

The motorized beam expanders of second generation are precise and easy to integrate. They are used in automatic production processes or in application laboratories. The controller is integrated into the beam expander.

For high-power or short-pulse laser applications full fused-silica designs are available with excellent transmission and thermal resistance performance. The special coating with low absorption and high transmission for these fused-silica beam expanders covers complete wavelength ranges of 340-360 nm, 515-540 nm and 1030-1080 nm. Additionally Qioptiq offers the motorized beam expanders made of optical-glass versions for the wavelengths 532 nm and 1064 nm. The customer can select between three electrical interfaces (SubD9/RS232, Phoenix Contact/RS232 or USB 2.0).

Motorized beam expander with Phoenix Contact interface

Software

The Windows[™]-based software developed with LabView allows an easy control of the motorized beam expander. After initialization, the desired expansion is achieved by moving the two independent stepper motors. The lens positions for the magnification range of 2-8x are listed for each motorized beam expander type in provided tables. Ten individual pre-sets can be stored.

The beam expander can also be directly controlled under other operating systems via the serial interface (e.g. terminal program). All serial interface commands are listed in the manual.

	motorized System Works		ander 2-8x baud rate step 9600 0,00	/mm		Photonics for	Innoval
	Pos1 L1	Pos1 L2	[]		Pos6 L1		
Pos1	3650	3900			3650	3900	Pos6
	Pos2 L1	Pos2 L2	Initialise	Motion	Dor711	Pos7 L2	
Pos2	3650	3900	Land d Johnson	Long al d'Angun	3650	3900	Pos7
			LensL1/step	-			
	Pos3 L1	Pos3 L2	0499	2,071	Pos8 L1		
Pos3	3650	3900	LensL2/step l	_ensL2/mm	3650	3900	Post
	Pos4 L1	Pos4 L2	0500	2,075	Pos9 L1	Pos9 L2	r
Pos4	3650	3900	1	1	3650	3900	Pos9
	Pos511	Pos512	Store Po	cition	Pos1011	Pos10 L2	
Pos5	3650	3900	Store Po	SIGUI	3650	3900	Post
	Status Box						
		Fused Silica					

Windows™ software mask for easy control of motorized beam expansion.

Further information is available at:

www.qioptiq-shop.com including 3D CAD data, product-specific graphs of variable beam expanders and the manual for the motorized beam expanders.

LINOS Variable Beam Expander

Beam expander with a variable expansion factor 2x to 8x for 1064 \mbox{nm}

- Continuous variation of magnification 2x...8x or 2x...10x
- Choice between fused-silica or glass entrance lens
- Continuous variation of exit-beam divergence
- Wavelengths 355 nm, 532 nm, 633/780/830 nm or 1064 nm
- Precise scales allow reliable settings and high repeatability
- Max. exit-beam diameter 31 mm
- Max. length 166.2 mm
- Max. diameter 42.0 mm
- Mounting diameter 37.6_{-0.01} mm, reference on surface A (see page 12)

LINOS Variable Beam Expander 2-8x

Wavelength	Max. entrance-beam diameter at 1/e ²	Entrance lens made of	Part No.
(nm)	(mm)		
355	3.4	fused silica	4401-402-000-20
532	4	fused silica	4401-446-000-20
532	8	optical glass	4401-257-000-20
633/780/ 830	8	optical glass	4401-258-000-20
1064	4	fused silica	4401-359-000-20
1064	8	optical glass	4401-256-000-20

Subject to technical changes

LINOS Variable Beam Expander 2-10x

Wavelength	Max. entrance-beam diameter at 1/e ²	Entrance lens made of	Part No.	
(nm)	(mm)			
1064	8	optical glass	4401-531-000-20	

Entrance-beam diameter max. = 31 mm / zoom factor

14

LINOS Motorized Beam Expander

Motorized beam expander with Phoenix Contact interface

- Continuous variable magnification 2x ... 8x
- Fused-silica or optical-glass designs
- Continuous variation of exit-beam divergence
- Wavelengths 340-360 nm, 515-540 nm or 1030-1080 nm
- Software running on the Windows™ platform (XP, Win7)
- Reduce machine setup times by automatic change of magnification
- Maintains laser-protection class during readjustment of the beam expander
- All-in-one design, controller integrated
- CE and ROHS conform
- IP 20

- Exit-beam diameter: max. 31 mm
- 10 individual pre-sets for magnification and divergence
- Pointing stability < 0.5 mrad
- Fast adjustment from 2x to 8x about 5 sec
- Mechanical dimensions: length 203 mm, width 58 mm, height 55.5 mm
- Mechanical interface via high-precision holes 6^{H7} (recommended) or mounting diameter 39_{h11}
- Different electronic interfaces: SubD9/ RS232, USB 2.0, Phoenix Contact/ RS232
- Baud rate: 9600 bit/sec
- Power input 7–12 V, Phoenix Contact 7-24 V

LINOS Motorized Beam Expander - Fused silica

Wavelength	Max. entrance-beam diameter at 1/e ²	PC Interface	Part No.
(nm)	(mm)		
340 - 360	6	SubD9/ RS232	4401-516-000-20
340 - 360	6	Phoenix Contact/ RS232	4401-516-000-21
340 - 360	6	USB 2.0	4401-516-000-22
515 – 540	8	SubD9/ RS232	4401-515-000-20
515 - 540	8	Phoenix Contact/ RS232	4401-515-000-21
515 – 540	8	USB 2.0	4401-515-000-22
1030 - 1080	8	SubD9/ RS232	4401-514-000-20
1030 - 1080	8	Phoenix Contact/ RS232	4401-514-000-21
1030 - 1080	8	USB 2.0	4401-514-000-22

Subject to technical changes

LINOS Motorized Beam Expander - Optical glass

Wavelength	Max. entrance-beam diameter at 1/e ²	PC Interface	Part No.
(nm)	(mm)		
532	8	SubD9/ RS232	4401-502-000-23
532	8	Phoenix Contact/ RS232	4401-502-000-21
532	8	USB 2.0	4401-502-000-22
1064	8	SubD9/ RS232	4401-503-000-20
1064	8	Phoenix Contact/ RS232	4401-503-000-21
1064	8	USB 2.0	4401-503-000-22

Entrance-beam diameter max. = 31 mm / zoom factor

LINOS Focus-Ronar 355 nm

Focusing lenses are optimized for highprecision applications, as used in laser systems for welding, cutting, drilling and structuring.

- Focal lengths ranging from 58 mm to 120 mm
- Flexible lens exchange without any adjustment
- Three-lens-element designs
- Full fused-silica designs
- Diffraction limited up to 17.5 mm (1/e²) entrance-beam diameter
- High clear aperture 35 mm
- Housing diameter 41_{h7} mm
- Transmission ≥ 98%
- Laser-damage threshold 5 J/cm² at 355 nm, 5 ns, 100 Hz

LINOS Focus-Ronar 355 nm

WD

Focal length	Length L	Working distance WD	Part No.
(mm)	(mm)	(mm)	
58	26.7	48.9	4401-519-000-20
77	25.1	68.8	4401-521-000-20
90	25.1	81.7	4401-522-000-20
120	24.7	112.1	4401-523-000-20

Subject to technical changes

41_{h7}

35

LINOS Focus-Ronar 1064+532 nm

41_{h7}

35

Focusing lenses are optimized for highprecision applications, as used in laser systems for welding, cutting, drilling and structuring.

- Focal lengths ranging from 58 mm to 120 mm
- Flexible lens exchange without any adjustment
- Three-lens-element designs
- High clear aperture 35 mm
- Housing diameter 41_{h7} mm
- The coating is optimized for 1064 nm, $T \ge 97\%$ and T(532 nm) $\ge 96\%$
- Good inspection performance at VIS wavelengths
- Laser-damage threshold 10 J/cm² at 1064 nm, 9 ns, 100 Hz
- Laser-damage threshold 6 J/cm² at 532 nm, 6 ns, 100 Hz

LINOS Focus-Ronar 1064+532 nm

WD

Focal length	Length L	Working distance for 1064 nm	Working distance for 532 nm	Part No.
(mm)	(mm)	(mm)	(mm)	
58	24.6	48.3	47.7	4401-505-000-20
77	18.9	72.2	71.5	4401-486-000-20
90	33.6	73.7	73.3	4401-490-000-20
120	24.0	110.7	109.8	4401-420-000-20

Insitu Inspection System Inspec.x scan

inspec.x scan (l.) and OPTEM Zoom 70XL lens system

Process control is an important part of each modern production process to achieve appropriate quality at optimized cost within the value chain. As a provider of high-performance F-Theta-Ronar lenses and precision Optem micro-imaging lenses, Qioptiq now combines both systems to the optical insitu process control system inspec.x scan for laser material processing applications. Typical applications are control of melting pools and welding seams, monitoring cutting kerfs and laser positioning.

- Insitu inspection from 380 nm to 1000 nm (other inspection wavelengths on request)
- High flexibility for various inspection goals
- Full compatibility with all standard LINOS F-Theta-Ronar and Focus-Ronar lenses
- Full compatibility with Optem Zoom 70XL lens system
- Application-specific beam splitters and filters can be provided by Qioptiq too
- Expert advice for setup and integration

Insitu Inspection System Inspec.x scan

Туре	Zoom	FOV (mm²) with 1064 nm/160 mm F-Theta lens	FOV (mm²) with 1064 nm/256 mm F-Theta lens	Part No.
inspec.x scan zoom	1x to 7x	8.0 x 6.0 to 1.1 x 0.9	12.7 x 9.6 to 1.8 x 1.4	on request
inspec.x scan fixed	1x	8.0 x 6.0	12.7 x 9.6	on request

Protective Glasses

- Optimum protection for the optical system
- Coated on both sides
- High transmission for the corresponding wavelength or wavelength range
- High laser-damage threshold
- Short delivery time

Protective Glasses

Protective glass	Protective glass diameter	Protective glass thickness	AR coated for λ	Fused silica	Part No.
	(mm)	(mm)	(nm)		
PG 2	75	1.6	1064,VIS		4401-301-001-00
PG 4	75	1.5	340-380,633	х	4401-399-005-01
PG 5	100	3	1064, VIS		4401-261-004-00
PG 6	113	3	1064, VIS		4401-288-005-01
PG 7	113	3	532		4401-289-007-00
PG 8	75	1.6	532		4401-304-005-00
PG 9	113	3	532/1064		4401-288-015-00
PG 11	113	3	340-380,633	х	4401-481-005-00
PG 13	113	3	515-540	х	4401-496-005-00
PG 14	113	3	1030-1080	х	4401-499-005-00
PG 15	113	3	340-380,633	х	4401-511-823-00
PG 16	132	3	1030-1080	х	4401-513-006-00
PG 17	113	3	940-980		4401-524-004-00
PG 18	100	3	940-980		4401-527-004-00
PG 19	75	1.6	940-980		4401-528-005-00
PG 20	113	3	1550		4401-532-005-00
PG 21	132	3	515-540	х	4401-517-006-00

Discover the Q!

Qioptiq supplies cutting edge technology for all optical requirements of Industrial Manufacturing. Worldwide production capacities and state-of-theart manufacturing plants guarantee an impressive portfolio of photonic products and solutions. Join us on a journey of discovery in our Laser Material Processing brochure!

Photonics for Innovation

QIOPTIQ Photonics GmbH & Co. KG

LMP – Laser Material Processing Hans-Riedl-Straße 9 85622 Feldkirchen Germany

 Phone
 +49 (0)89 255 458-424

 Fax
 +49 (0)89 255 458-141

 E-mail
 Imp@qioptiq.de

 Internet
 www.qioptiq.com

